Abstract

Abstract Substantial evidence indicates that many petroleum producing horizons contain naturally occurring, ordered fracture systems and that within a particular geologic zone, vertical fractures induced in wellbores often will be directed along a particular compass direction. Both conditions will seriously alter the fluid displacement behavior within reservoirs. In this study the effect of induced fracture orientation and length on sweep efficiency is determined for a five-spot pattern. In general, it is assumed that all wells are fractured and directed along the same compass direction. Using the electrical analog to steady state, two-dimensional fluid flow in porous media, boundary conditions are obtained from which flood fronts are tracked numerically. The numerical computations require a particle tracking routine for approximating flood front histories. It is shown that recovery is sensitive to the length and orientation of fractures for the pattern studied. With the proper design of fracture-pattern systems, recovery can be enhanced considerably. Introduction Hydraulic fracturing introduced in 1949, gave the industry a rather inexpensive means of increasing the fluid injection or production capacity of wells. It has been used with particular success to increase the production rate of wells completed in tight formations, such as in western Pennsylvania where producers have fractured in depleted or near-depleted fields and observed economic responses. Once the natural energy declines in such a reservoir where all wells have been fractured, waterflooding is generally suggested as means of further increasing recovery. Of the dual objective sought in waterflooding -- high injectivity and high break-through sweep efficiency - the former condition can be obtained if all wells in the flood pattern are fractured; the latter condition should depend on the nature of the fracture system. Considerable theoretical work has been published on the nature of fractures induced in boreholes. Although discussion persists concerning the possibility of forming a horizontal at a given point within the wellbore, it is generally conceded that only vertical fractures will develop below a given depth, i.e., where the fracturing pressure is less than the overburden load. Given the fact that fractures will be vertical in most cases of interest, it is also important to know whether there is order to fracture orientations within a given geological region. Kehle has suggested that in tectonically relaxed areas of uncomplicated geology, the stresses are fairly uniform and all fractures in the region should be parallel. Dunlap arrived at a similar conclusion in a theoretical investigation of localized stress conditions surrounding the borehole. He concluded that most vertical fractures are propagated in a preferred azimuthal direction. Fraser and Pettitt, in extending these theoretical suggestions to a specific field case, used an impression packer to record both a vertical fracture and the orientation of this fracture in the wellbore of a well in the Howard Glasscock field, Tex. Use of this information enhanced the waterflood recovery of the field. Anderson and Stahl also used impression packers on three fractured wells in the Allegheny field, N. Y., and found that the fractures were oriented more or less along the same compass direction. Orientation of the fractures in this manner depends on the stress condition within the formation during fracturing. Elkins and Skov have demonstrated that a natural, oriented, vertical fracture system exists within the Spraberry field. SPEJ P. 260ˆ

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.