Abstract
Intermediate connectors play an important role in semiconductor devices, especially in tandem devices. In this paper, four types of different intermediate connectors (e.g. Mg:Alq3/MoO3, MoO3, Mg:Alq3, and none) and two kinds of modified electrode materials (LiF and MoO3) integrated into the special multilayer devices are proposed, with the aim of studying the impact of light illumination and electrode adjustment on the carrier behavior of intermediate connectors through the current density–voltage characteristics, interfacial electronic structures, and capacitance–voltage characteristics. The results show that the illumination enhances the charge generation and separation in intermediate connectors, and further electrode interface modifications enhance the functionality of intermediate connectors. In addition, the device with an efficient intermediate connector structure shows a photoelectric effect, which paves the way for organic photovoltaic devices to realize optical-electrical integration transformation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.