Abstract

The effects of ice on the lipid phase behaviour of di-18:1 PE and di-18:2 PE were studied by comparing the behaviour of these lipids in supercooled and frozen dispersions. The presence of ice raised the onset temperature of the L α → L β phase transition of di-18:1 PE from −10°C to −6.5°C and increased its molar enthalpy from 6.1 to 8.5 kcal/mol but had little effect on the co-operativity of the transition. Real-time X-ray diffraction measurements of the H II → L α phase transition of di-18:2 PE suggested that this transition could take place in the presence of ice but that the corresponding L α → H II phase transition could not take place until the ice melted. Measurements of the temperature dependence of the d-spacing of di-18:1 PE and di-18:2 PC in frozen dispersions indicated that the amounts of unfrozen water in such dispersions changes significantly with temperature. It was concluded that the increases in onset temperature and molar enthalpy seen for the L α →L β transition of di-18:1 PE probably reflected the effects of osmotic dehydration. The main effect of ice in the case of the H II a ̊ L α phase transition, however, appeared to be to limit the ability of the lipid to undergo structural reorganisation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.