Abstract

This paper deals with the effect of hydrodynamic conditions on the detection of toluene dissolved in water by means of fibers with a truncated parabolic inverted-graded index (IGI) profile. The detection is based on refractive-index changes of a detection layer of polydimethylsiloxane (PDMS) applied on the fiber which are induced by penetration of toluene into the layer. The dependence of the response of the sensing fiber placed in a flow cell on the flow velocity of the detected aqueous solution of toluene has been investigated. The sensing fiber was successively exposed to flows of distilled water and aqueous solutions of toluene. The fiber responses were measured for three chosen concentrations of the toluene solutions and for five flow velocities of the solutions. From these results the dependence of the relative decrease of the output signal on the flow velocity was determined. It has been found that the magnitude of output signal changes is approximately proportional to the solution concentration and the rate of the signal changes in the tested concentration range depends approximately linearly on the solution flow velocity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.