Abstract

ABSTRACTSilver–copper/molybdenum disulfide (Ag-Cu/MoS2) composites, prepared by powder metallurgy and hot press sintering, were extruded at a temperature of 680°C with extrusion ratios of 10 and 70. Mechanical tests and tribotests were carried on both the hot-pressed and hot-extruded composites. The tribological properties of the composites against a silver coin disc were investigated on a pin-on-disc tester with normal load and sliding speed of 5 N and 0.27 m/s, respectively. The microstructure, wear morphology, and cross section of the worn subsurface were observed by scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS) analyses were performed on the worn surfaces of Ag-Cu/MoS2 composites. The results indicated that the distribution of the MoS2 particles in the composites was improved and the interfacial strength of Ag/MoS2 was enhanced during the process of hot extrusion. The hardness, bending strength, and wear resistance of hot-extruded composites increased remarkably due to the presence of the continuous matrix skeleton and the stronger interfacial bonding of Ag/MoS2. XPS revealed that a chemical reaction had occurred at the worn surface due to the friction heat. Although the dominant wear mechanism was fatigue wear for both the hot-pressed and hot-extruded composites, finer debris and a lower wear rate were observed in hot-extruded composites due to the fact that the nucleation and growth of cracks in the worn subsurface were restrained in the process of tribotest.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.