Abstract
We present the results of experimental studies and modelling of the evaluation of the bearing capacity of hollow 3D-printed walls with the printed shell performing bearing functions. The bearing capacity of hollow 3D-printed walls was experimentally assessed depending on the ratio of the void areas and casting layers in the wall structure. It was established that in case of central loading, a 3D-printed wall with bearing casting layers can serve as a bearing wall similar to traditional types of masonry construction without filling voids with structural concrete and reinforcement. We established the value of strength reduction of hollow 3D-printed walls, which amounted to ~0.1 – 0.25 MPa per 1 % of the increased area of voids. The limit value of the hollow structure parameter was determined, which must not exceed K = 0.75 in order to ensure the bearing capacity of self-bearing and non-bearing 3D-printed walls. We obtained an experimental model of the relationship between the hollow structure parameter and the bearing capacity, which allowed predicting the bearing capacity of a 3D-printed wall under central loading. It was suggested to take into account the hollow structure parameter K when calculating the elements of unreinforced 3D-printed walls under central compression according to the first group of limit states.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal for Computational Civil and Structural Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.