Abstract

Complementary methodologies were used to analyse the pressure-induced modification and functionality of myofibrillar proteins from pork meat pressurised at 200, 400, 600, or 800MPa (10min, 5 or 20°C). Pressure at 400MPa was found to be the threshold for loss of solubility, and the structural proteins, myosin and actin, lost their native solubility due to aggregation. The results from the extraction of proteins with different reagents targeting the disruption of specific molecular interactions suggested that pressure-induced aggregation was caused mainly by hydrogen bonding during pressurisation and not hydrophobic interactions nor disulphide cross-links. Furthermore, the soluble proteins were exposed to remarkable structural changes already at 200MPa and lost their native functionality. The modification of the proteins in pressurised meat affected the water binding sites of the myofibrillar proteins and, thereby, the interactions between proteins and water molecules, and distribution between myofibrillar and extra-myofibrillar compartments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.