Abstract

In high-speed electric trains, a pantograph is mounted on the roof of the train to collect power through contact with an overhead catenary wire. The effect of fast harmonic and parametric excitation on a stochastically driven pantograph-catenary system is studied in this paper. A single-degree-of-freedom model of the pantograph-catenary system is adopted, wherein the stiffness of the nonlinear spring has a time-varying component characterized by both low and high frequencies. Using perturbation and harmonic averaging, a Fokker-Planck-Kolmogorov equation governing the stationary response of the pantograph-catenary system is set up. Based on the transition probability density of the stationary response, it is found that even small high-frequency parametric excitation has an appreciable effect on the system response. Among other things, it shifts the resonant frequency and often changes the response characteristics markedly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.