Abstract

Grain boundary engineering was applied to a 316L stainless steel. The proportion of low-Σ coincidence site lattice boundaries was increased to more than 70% in the GBE specimen. The effect of grain boundary character distribution formed through GBE on the mechanical properties at different strain rates (4 × 10−2, 4 × 10−3, 4 × 10−4, 4 × 10−5 s−1) was studied by tensile test at room temperature. The results showed that the GBE specimens exhibited higher uniform elongation than the non-GBE specimens. With the strain rate decreasing, the uniform elongations of GBE specimens had a greater extent of increase. The local misorientation, average Schmid factor ( $$ \overline{m} $$ ) and Taylor factor (M) in GBE and non-GBE specimens at uniform plastic deformation area were studied by using electron backscatter diffraction. The results indicate that the micro-zone strain was more uniformly distributed and the activation process of the slip system was apt to happen in the GBE specimens.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.