Abstract

Surgical repair of Tetralogy of Fallot (TOF) involves a series of steps to remove right ventricular outflow tract and pulmonary artery obstruction. However, the large degree of anatomic variability among preoperative TOF patients may impact the effectiveness of different repair strategies and, subsequently, different geometric modifications for different patients. This study investigates the relationships between geometric and hemodynamic parameters and mechanical energy efficiency for a patient-specific dataset of 16 postoperative TOF repairs, using morphometric and statistical shape analyses, as well as computational fluid dynamics simulations with physiologically-relevant inlet and outlet boundary conditions. Quantitatively, negative correlations were found between the right and left pulmonary artery centerline tract cumulative torsion and energy efficiency (r = -0.65, p = 0.01, for both). A positive correlation was also found for a statistical shape mode associated with skewing of the geometric sub-regions (r = 0.61, p = 0.01). Qualitatively, medium- and low-efficiency geometries exhibit disturbed flow and much more proximal vortex formation as compared to a high-efficiency geometry. Thus, it is recommended, as much as possible, to both relieve and avoid the introduction of torsion into the patient's anatomy during surgical repair of TOF.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.