Abstract

In human interaction, people will keep different distances from each other depending on their gender. For example, males will stand further away from males and closer to females. Previous studies in virtual reality (VR), where people were interacting with virtual humans, showed a similar result. However, many other variables influence proximity, such as appearance characteristics of the virtual character (e.g., attractiveness). Our study focuses on proximity to virtual walkers, where gender could be recognised from motion only, since previous studies using point-light displays found walking motion is rich in gender cues. In our experiment, a walking wooden mannequin approached the participant embodied in a virtual avatar using the HTC Vive Pro HMD and controllers. The mannequin animation was motion captured from several male and female actors and each motion was displayed individually on the character. Participants used the controller to stop the approaching mannequin when they felt it was uncomfortably close to them. Based on previous work, we hypothesised that proximity will be affected by the gender of the character, but unlike previous research, the gender in our experiment could only be determined from character’s motion. We also expected differences in proximity according to the gender of the participant. We additionally expected some motions to be rated more attractive than others and that attractive motions would reduce the proximity measure. Our results show support for the last two assumptions, but no difference in proximity was found according to the gender of the character’s motion. Our findings have implications for the design of virtual characters in interactive virtual environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.