Abstract

An experimental study has been performed on the effect of the temperature of gas and water droplets (3–6 mm in size) on deformation of water droplets that move with a moderate velocity (up to 5 m/s). A high-speed videocamera (recording at up to 105 fps) and a cross-correlation videocomplex were used. The droplet temperature varied in the range of 285–360 K. For gaseous mediums, air at a temperature of 280–300 K and condensed substance combustion products at a temperature about 1100 K were used. Typical deformation cycles were found. Their length, duration, and amplitude were calculated. The time a shape of droplet transforms into a new shape and the time the droplets retain their shape as they move through a gas medium have been determined. Approximating correlations for the basic characteristic of deformation under various heating or cooling conditions in a water droplet–gas system were derived.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.