Abstract

Formalin-fixed, paraffin-embedded tissues generally provide low yields of extractable RNA that exhibit both covalent modification of nucleic acid bases and strand cleavage. This frustrates efforts to perform retrospective analyses of gene expression using archival tissue specimens. A variety of conditions have been reported to demodify formaldehyde-fixed RNA in different model systems. We studied the reversal of formaldehyde fixation of RNA using a 50 base RNA oligonucleotide and total cellular RNA. Formaldehyde-adducted, native, and hydrolyzed RNA species were identified by their bioanalyzer electrophoretic migration patterns and RT-quantitative PCR. Demodification conditions included temperature, time, buffer, and pH. The reversal of formaldehyde-fixed RNA to native species without apparent RNA hydrolysis was most successfully performed in dilute Tris, phosphate, or similar buffers (pH 8) at 70°C for 30 minutes. Amines were not required for efficient formaldehyde demodification. Formaldehyde-fixed RNA was more labile than native RNA to treatment with heat and buffer, suggesting that antigen retrieval methods for proteins may impede RNA hybridization or RNA extraction. Taken together, the data indicate that reliable conditions may be used to remove formaldehyde adducts from RNA to improve the quality of RNA available for molecular studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.