Abstract

It is widely recognised that the optimal lay-up to resist classical local buckling of a laminated cylindrical shell subject to compression loading is one that is quasi-isotropic in nature. This ideal is difficult to achieve in practice due to manufacturing and additional design constraints. The minimum number of unidirectional layers, based on 0°, 90°, ±45° angles, is 48 – an example lay-up is shown. Balanced and symmetric laminates, that exhibit quasi-isotropic properties in-plane, are shown to give reduced buckling capacity depending on two factors. The first concerns the overall homogeneity of the laminate whilst the second is a function of the amount of flexural/torsional coupling. The former is shown to have the greater influence. In the absence of closed-form solutions these effects have been numerically quantified using finite element (FE) analysis techniques. Practical design guidelines are deduced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.