Abstract

Fava bean, which is available in high- and low-tannin varieties, is not an approved pet food ingredient and was not included in the “assumed to be safe” category based on its ability to cause favism and hemolytic anemia in susceptible humans. The effects of 7-day feeding of test canine diets containing moderate protein (~27%) were compared with two control commercial diets with normal (NP, grain-containing, ~25% protein) or high protein (HP, grain-free, ~41% protein). Fava bean diets were formulated either with or without Candida utilis fermentation processing to reduce antinutritional factors. Glucose tolerance, body weight, cardiovascular function, and blood parameters were investigated in beagles fed the NP or HP diets or a randomized, crossover, 2 × 2 Latin square design of the fava bean diets: unfermented high-tannin (UF-HT), fermented high-tannin (FM-HT), unfermented low-tannin (UF-LT), and fermented low-tannin (FM-LT). After 7 days, HP decreased red blood cells (RBC) (P < 0.05) compared with NP, while FM increased RBC compared with UF. HP increased blood bicarbonate, calcium, phosphorus, urea, cholesterol, and albumin:globulin ratio while decreasing bilirubin, liver enzymes, and total protein. Sodium:potassium ratio was increased in UF-HT, decreased in FM-HT, and intermediate in LT regardless of fermentation. Blood phosphorus was increased in HT. Blood amylase was increased in FM-HT and decreased in FM-LT, being intermediate in UF regardless of fava bean variety. Blood direct bilirubin was decreased in HT regardless of fermentation. Of note, left ventricular end-systolic volume and cardiac output were increased in NP compared with HP-fed dogs, but were normal and had no significant differences among the fava bean diets. As expected, plasma taurine, cystine, and cysteine levels were increased in HP- compared with NP-fed dogs. Plasma cysteine levels were increased in HT- compared with LT-fed dogs and in FM- compared with UF-fed dogs. Taken together, these results show that fava bean appears to be safe as a dog food ingredient at least in the short term, and its nutritional value appears improved by fermentation. Moreover, blood chemistry parameters and cardiovascular function were impacted by protein content which merits further investigation with longer term feeding trials.

Highlights

  • Fava bean (Vicia faba L.) has been regarded as a healthy, sustainable alternative for partially replacing animal protein sources in human diets [1]

  • The objective of this study was to determine if short-term (7day) feeding of beagles with a moderate protein diet that has 30% inclusion of fava bean flour would show altered glucose tolerance, body weight, cardiovascular function, and blood parameters when contrasted to commercial diets with normal vs. high protein

  • The objective of this study was to determine if neutered, mixedgender, adult beagles fed diets with 30% inclusion of fava bean flour would show altered nutrient digestibility, glucose tolerance, overall health, cardiovascular function, and plasma amino acid levels when contrasted to commercial diets with normal vs. high protein

Read more

Summary

Introduction

Fava bean (Vicia faba L.) has been regarded as a healthy, sustainable alternative for partially replacing animal protein sources in human diets [1]. While pulse ingredients in grain-free diets have been suggested as Abbreviations: ALP, alkaline phosphatase; ALT, alanine aminotransferase; AUC, area under the curve; CK, creatine kinase; CO, cardiac output; CP, crude protein; DCM, dilated cardiomyopathy; DB, direct bilirubin; DBP, diastolic blood pressure; DWT, left ventricular diastolic wall thickness; EDV, left ventricular end-diastolic volume; EF, ejection fraction; ESV, left ventricular endsystolic volume; FM, fermented; FMD, flow-mediated dilation; G6PD, glucose-6phosphate dehydrogenase; GGP, gamma-glutamyltransferase; GLDH, glutamate dehydrogenase; HP, high protein; HR, heart rate; HT, high-tannin fava bean variety; IB, indirect bilirubin; LT, low-tannin fava bean variety; LVIDd, left ventricular end-diastolic diameter; LVIDs, left ventricular end-systolic diameter; MV, maximum velocity; NP, normal protein; RBC, red blood cell; SBP, systolic blood pressure; SV, stroke volume; SWT, left ventricular systolic wall thickness; TB, total bilirubin; UF, unfermented; VTI, velocity time integral; WBC, white blood cell

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.