Abstract

As the pig becomes increasingly used for biomedical research, an effective and efficient in vitro culture system is essential. This study aimed to improve the commonly used porcine embryo culture medium, NCSU23, by altering the energy substrates and adding amino acids, using electrically activated diploid parthenotes from oocytes obtained from the ovaries of prepubertal and adult animals. Morphological development to day 6 and blastocyst cell number were examined. Glucose (5.56 mM) was replaced by pyruvate and lactate (0.2 mM and 5.7 mM, respectively) for either the entire culture period or for the first 48 h only. Blastocyst rates were not different between any of the treatments, and were similar for prepubertal and adult oocytes. When the embryos were cultured with pyruvate and lactate for the first 48 h and then glucose, there was a significant increase in blastocyst cell number compared to glucose only. Blastocysts produced using pyruvate and lactate for the entire time tended to have more cells than those exposed to glucose only and less than those who were cultured in pyruvate and lactate for the first 48 h and then glucose. Nonessential amino acids added for the first 48 h and nonessential and essential amino acids added for the remaining time significantly increased blastocyst cell number only when the embryos were grown in pyruvate and lactate followed by glucose. Blastocyst rates were not different between any of the treatments, and this result was the same when using sow or gilt oocytes. The modified medium was then tested using in vitro matured and fertilized embryos from sow oocytes. Blastocyst rates and cell number were significantly increased in the modified medium compared to those grown in unmodified NCSU23. This shows that altering energy substrates and adding amino acids can increase the quantity and cell number of IVP blastocysts compared with NCSU23.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.