Abstract

AimsEndothelin (ET) receptor A antagonism decreases neuronal damage in experimental models of stroke. Since large arteries like basilar artery contribute significantly to total cerebrovascular resistance and are major determinants of microvascular pressure, dysregulation of basilar artery function may worsen stroke injury. ET-1 is involved in the regulation of basilar constriction. However, whether stroke influences vasoreactivity of basilar artery and to what extent ET-1 contributes to basilar vascular dysfunction after stroke remained unknown. The goal of this study was to test the hypothesis that ET-1 impairs basilar artery vasorelaxation after ischemia/reperfusion (I/R) injury via activation of ETA receptor. Main methodsMale Wistar rats were subjected to 3h middle cerebral artery occlusion (MCAO) and 21h reperfusion. One group received ETA receptor antagonist atrasentan (5mg/kg, i.p.) at reperfusion. At 24h, basilar arteries were isolated from control non-stroked, stroked and stroked+atrasentan-treated animals for vascular reactivity measurements using pressurized arteriograph. Key findingsAcetylcholine (Ach)-induced maximum relaxation (Rmax) was decreased in stroked animals as compared to non-stroked group and ETA antagonism partially restored it. There was also a trend for decreased EC50 value for the antagonist treatment group indicating improved Ach sensitivity. SignificanceThese findings suggest that I/R not only affects vessels distal to the occlusion but also impairs relaxation of proximal large vessels. ET-1-mediated basilar artery dysfunction may contribute to neurovascular damage after stroke and early restoration of vascular function by ET receptor antagonism after I/R injury may offer a therapeutic strategy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.