Abstract

Based on the major Department of Energy Solar Industrial Process Heat Program, it has been determined that the existing techniques for predicting the performance of parabolic trough solar collectors greatly overpredict the thermal output of these systems. The objective of the research reported herein is to improve the predictive capability of existing models by incorporating a factor that accounts for dust and dirt accumulation on the optical surfaces. This has been accomplished by modifying the optical efficiency with a dust factor to account for the reduced reflectivity of the mirror and reduced transmissivity of the cover glass. This technique has been developed independent of the test data used for verification. The dust factors have been developed from exposure tests conducted at six different sites, so that it is also independent of location and collector type. Wash frequency and optical degradation rate are input to the model to compute the time varying dust factors. Recommendations for these parameters are provided based on long-term observations. The complete model is then used to provide realistic predictions of real-world performance of solar IPH systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.