Abstract

Lactic acid bacteria (LAB) fermentation is a viable approach for producing plant-based flavour compounds; however, little is understood about the impact of different LAB strains and medium compositions on the production of volatile organic compounds (VOCs). This study investigated the impact of the addition of individual amino acids (AAs) (L-leucine, L-isoleucine, L-phenylalanine, L-glutamic acid, L-aspartic acid, L-threonine, or L-methionine) to a defined medium (DM) on the generation of VOCs (after 0, 7, and 14 days) by one of three LAB strains (Levilactobacillus brevis WLP672 (LB672), Lactiplantibacillus plantarum LP100 (LP100), and Pediococcus pentosaceus PP100 (PP100)), using proton transfer reaction-time of flight-mass spectrometry (PTR-ToF-MS). The concentration of m/z 45.031 (t.i. acetaldehyde) was significantly (p < 0.05) higher after 7 days of fermentation by LP100 in the DM supplemented with threonine compared to all other media fermented by all three strains. The concentrations of m/z 49.012 (t.i. methanethiol) and m/z 95.000 (t.i. dimethyl disulfide) were significantly (p < 0.05) higher after 7 days of fermentation by either LP100, PP100, or LB672 in the DM supplemented with methionine compared to all other media. Information on the role of individual AAs on VOCs generation by different LAB strains will help to guide flavour development from the fermentation of plant-based substrates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.