Abstract

Cocks Comb (Celosia cristata) is a hot-season annual species which is grown from seeds. A study was carried out in the horticulture laboratory of Gorgan University of Agriculture Science and Natural Resources of February 2013 to evaluate the impact of salinity and potassium nitrate on the germination of cockscomb with five salinity levels (0, −2, −4, −6, and −8 bars) and three potassium nitrate levels (0%, 0.2%, and 0.4%) at 25°C on the basis of a Randomized Complete Block Design. Analysis of variance showed significant differences among salinity levels in germination percentage, radicle length, plumule length, and seed vigor at the 1% probability level. Mean comparison for germination percentage revealed that higher salinity reduced seed germination percentage so that it was decreased from 80% in no salinity to 15% in −8 dS⋅m−1. The highest percentage of germination was related to zero percent salt and potassium nitrate 0.2%. Also, the highest radicle length of 2.48 cm was related to no salinity and the lowest one (0.61 cm) to −6 dS salinity. The highest radicle length and seed vigor were also observed in no salinity. Potassium nitrate by itself had no impact on the measured traits. Among interactions between salinity and potassium nitrate, the highest germination percentage was observed under 0 salinity × 0.2% potassium nitrate.

Highlights

  • IntroductionThe flowers are yellow, pink, red, and purple in color

  • Mean comparison for germination percentage revealed that higher salinity reduced seed germination percentage so that it was decreased from 80% in no salinity to 15% in −8 dS·m−1

  • Analysis of variance showed that germination percentage and speed, seed vigor, plumule and radicle length, plumule and radicle fresh weight, and normal seedlings were significantly affected by different levels of salinity and their interactions with potassium nitrate at the 1% and 5% probability level (Table 1)

Read more

Summary

Introduction

The flowers are yellow, pink, red, and purple in color. Cockscombs are propagated by the seeds [2] It is highly heliotrope and despite it is drought resistant, keeping soil moisture in hot sunny days can help the production of good flowers [1]. Salinity reduces water potential in root zone by reducing available water potential on the one hand and some ions leave toxic impacts on plants’ physiological and biochemical processes on the other hand. Both phenomena disrupt the uptake of the nutrients by the roots, and reduce plants’ growth [3] [4]. Salinity susceptibility of plants (both agronomical and ornamental) varies at different growth stages [5]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.