Abstract

AbstractThe improvement of the brittle behavior of Polylactic acid (PLA) resin was studied by blending it with Polycaprolactone (PCL) resin. These materials were fabricated into the compressed films and injection moldings. The values of tensile modulus and strength were appropriate, judging from the rule of mixtures. However, the ultimate tensile strain was very small. Dicumyl peroxide (DCP) was added to this blend system to improve its ultimate tensile strain. It was found that the value of ultimate tensile strain peaked at low DCP concentration. The samples at low DCP contents show yield point and ductile behavior under tensile test. The impact strength of the optimum composition was 2.5 times superior to neat PLA, and ductile behavior such as plastic deformation was observed at its fracture surface. It was found that the carbonyl groups of the blend material with DCP were altered by using FTIR spectroscopy. Dynamic mechanical analysis data revealed the dual phase nature of PLA/PCL blend albeit with good interfacial adhesion, and the DCP enhanced the viscous property in PCL phase, which agreed with tensile ductility and impact strength. The mechanical properties of this blend are comparable to those of general purpose HIPS and ABS. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1816–1825, 2006

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.