Abstract

In this study, active antibacterial cross-linked composite films were prepared through incorporating ε-poly-l-lysine (ε-PLL) into Siberian sturgeon gelatin-chitosan mixture. Cross-linking was performed by Glutaraldehyde (G) and/or Cinnamaldehyde (C). The antimicrobial, ε-PLL release, mechanical and morphological properties were then investigated. The addition of G to the biopolymer mixture significantly resulted in lower water vapor permeability, enhanced mechanical strength, lower moisture content, and water solubility. The FTIR spectra indicated the formation of imine bonds in the composite film network. The microstructure of composite films was affected by the cross-linking agent. The films cross-linked by G and C showed smooth and rough surfaces, respectively. C induced very small pores in the cross-section of the composite film. The composite films incorporated with ε-PLL revealed higher and steady-state in vitro antimicrobial properties against food spoilage bacteria. A higher release of ε-PLL and hence higher antibacterial activity was measured in the matrices cross-linked by C than those cross-linked by G. The results showed that the ε-PLL-fortified fish gelatin/chitosan composite films can be considered as a food-packaging material. G and C, as cross-linkers, can improve the structural and antimicrobial properties of this composite film.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.