Abstract
In this study, the diffusion behavior and microstructural evolution of Cu-Sn intermetallics at eutectic Sn-Pb solder/copper substrate interface of PBGA solder joints was studied. The PBGA solder joints were formed by different profiles, which was devised to have the same “heating factor”—the integral of the measured temperature above the liquidus (183°C) with respect to dwell time in the reflow profile, but to have different conveyor speeds. Using the theory of heat transmission, it is shown that the solder joint cooling rate during solidification increases with increasing conveyor speed. As a result, the “crystallization degree” of the solder joint microstructure decreased with the increasing of cooling rate. The thickness of IMC layer increased with extension of aging time. The growth of IMC is a diffusion-controlled process, i.e., tin diffuses into copper, and the diffusion coefficient in the “disordered region” Db is much bigger than that in the “crystallization region” Dl, so the IMC growth rate of solder joint with faster cooling rate was larger. On the other hand, although Db>Dl at all temperatures, the difference increases as temperature decrease, consequently, the difference of IMC thickness growth among different cooling rate solder joints varied according to the aging temperature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.