Abstract
Key requirements for cardiac tissue engineering include the maintenance of cell viability and function and the establishment of a perfusable vascular network in millimeters thick and compact cardiac constructs upon implantation. We investigated if these requirements can be met by providing an intrinsic vascularization stimulus (via sustained action of VEGF secreted at a controlled rate by transduced myoblasts) to a cardiac patch engineered under conditions of effective oxygen supply (via medium flow through channeled elastomeric scaffolds seeded with neonatal cardiomyocytes). We demonstrate that this combined approach resulted in increased viability, vascularization and functionality of the cardiac patch. After implantation in a mouse model of myocardial infarction, VEGF-expressing patches displayed significantly improved engraftment, survival and differentiation of cardiomyocytes, leading to greatly enhanced contractility as compared to controls not expressing VEGF. Controlled VEGF expression also mediated the formation of mature vascular networks, both within the engineered patches and in the underlying ischemic myocardium. We propose that this combined cell-biomaterial approach can be a promising strategy to engineer cardiac patches with intrinsic and extrinsic vascularization potential.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.