Abstract

The corrosive behaviour of loaded amine solvents was evaluated under stripper operating conditions, for post-combustion carbon capture, to determine the feasibility of using carbon steel in plant construction. In addition to monoethanolamine, three alternative amine solvents: methyldiethanolamine (MDEA), 2-amino-2-methyl-1-propanol (AMP), 1-(2-aminoethyl)piperazine (AEPZ), and the common additive K2CO3 were studied when in contact with carbon steel (C1018) over a 28-day period. Corrosive behaviour was evaluated using carbon steel coupons: gravimetric method for weight change, surface imaging (SEM) and analytical techniques (EDX and XRD), and Fe ion concentration in solution (ICP–OES). The results demonstrated that MDEA and AMP as well as K2CO3 develop a significant siderite (FeCO3) layer on the carbon steel surface. The presence of this layer is attributed to the preferred reaction pathway with CO2 for tertiary and sterically hindered amines. The FeCO3 layer formed in the case of MDEA provides superior protection from continued corrosion of the carbon steel. By contrast, MEA and AEPZ show significant corrosion to the carbon steel surface. In conclusion, MDEA, AMP, and K2CO3 can preferentially produce sufficient surface FeCO3 layers to reduce corrosion levels in carbon steels for use under stripper conditions in post-combustion carbon capture plants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.