Abstract
There is abundant evidence that chronic renal failure (CRF) and end-stage renal disease (ESRD) alter drug disposition by affecting protein and tissue binding and reducing systemic clearance of renally cleared drugs. What is not fully appreciated is that CRF can significantly reduce nonrenal clearance and alter the bioavailability of drugs predominantly metabolized by the liver. Animal studies in CRF have shown a major down-regulation (40-85%) of hepatic cytochrome P-450 metabolism involving specific isozymes. Phase II reactions such as acetylation and glucuronidation are also involved, with some isozymes showing induction and others inhibition. Hepatic enzymes exhibiting genetic polymorphisms such as N-acetyl-transferase-2 (NAT-2), which is responsible for the rapid and slow acetylator phenotypes, have been shown to be inhibited by ESRD and reversed by transplantation. There is some evidence pointing to the possibility of inhibitory factors circulating in the serum in ESRD patients which may be dialyzable. This review includes all significant animal and clinical studies using the search terms "chronic renal failure,""cytochrome P-450," and "liver metabolism" over the past 10 years obtained from the National Library of Medicine MEDLINE database, including relevant articles back to 1969.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.