Abstract

Novel cell-disruption combinations (autolytic incubation and hypotonic osmotic shock combined with HPH or pH12) were used to investigate the fundamental mass transfer of lipids and proteins from Nannochloropsis slurries (140 mg biomass/g slurry).Since neutral lipids exist as cytosolic globules, their mass transfer was directly dependent on disintegration of cell walls. Complete recovery was obtained with complete physical disruption. HPH combinations exerted more physical disruption and led to higher yields than pH12.In contrast, proteins exist as both cytosolic water-soluble fractions and cell-wall/membrane structural fractions and have a complex extraction behaviour. Mass transfer of cytosolic proteins was dependent on cell-wall disintegration, while that of structural proteins was governed by cell-wall disintegration and severance of protein linkage from the wall/membrane. HPH combinations exerted only physical disruption and were limited to releasing soluble proteins. pH12 combinations hydrolysed chemical linkages in addition to exerting physical disruption, releasing both soluble and structural proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.