Abstract

This paper investigates the structure–property relationship of a new generation of poly(styrene-b-isobutylene-b-styrene) (SIBS) block copolymers with a branched (dendritic) polyisobutylene core with poly(isobutylene-b-para-methylstyrene) end blocks (D_IBS), and their carbon black (CB) composites. These materials display thermoplastic elastomeric (TPE) properties, and are promising new biomaterials. It is shown that CB reinforced the block copolymer TPEs, effectively delayed the oxidative thermal degradation of the D_IBS materials, and greatly improved their dynamic fatigue performance. Specifically, the dynamic creep of a CB composite was comparable to that of chemically crosslinked and silica-reinforced medical grade silicone rubber, used as a benchmark biomaterial.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.