Abstract

We have analyzed the effects of the cAMP relay inhibitor, caffeine, and the receptor antagonist, adenosine, on the regulation of the cell-surface cAMP receptor in suspension-starved Dictyostelium discoideum cells by measuring ammonium sulfate-stabilized binding of [3-H]cAMP to intact cells. When cells were starved in fast (230 r.p.m.) shaken suspension in 10 mM Na+/5 mM K+ phosphate buffer, pH 6.5, plus 1 mM CaCl2 and 2.5 mM MgCl2, and assayed for specific cAMP binding, receptor accumulation peaked at approximately 6 hours, reaching a maximum of 1.5 pmol cAMP bound/10(7) cells (saturation binding). Neither caffeine nor adenosine inhibited the accumulation of cAMP receptors. Similar results were obtained in caffeine-treated, slow shaken (90 r.p.m.) suspension cultures. These results suggest that starvation alone is sufficient stimulus to induce the cAMP receptor. We have also tested the effects of different buffer ionic compositions on the accumulation of cAMP receptors. Elevation of the monovalent ion concentration to 30-40 mM was found to significantly inhibit the induction of cAMP receptors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.