Abstract

In the industrial field, the search for improving the performance of machining tools considering their geometry, manufacturing, material, and coatings is a priority. This research focuses on optimizing the cutting edge for broaching Inconel 718. Drag-finishing was used to round and polish the cutting edge of a K10-Co 7% grade tungsten carbide roughing tool. The results reveal that increasing the cutting-edge radius affects the process forces increasingly, especially the thrust force. From the minimum tested radius of 5 micrometers to the maximum radius of 35 micrometers, the cutting and thrust force doubles at uncut thicknesses (RPT) of 75 and 100 micrometers. The plowing force is hardly affected. The shear coefficient Kcc also shows growth as the radius of the cutting-edge increases. The temperature increases proportionally with the radius, and in addition, the simulations show a change of the temperature distribution in the cutting profile with the change of the cutting-edge radius. Thus, the preparation of the cutting-edge could be crucial in the performance of the broaching process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.