Abstract

In this study, an improved delayed detached-eddy simulation method has been used to investigate the aerodynamic behavior of the CRH2 high-speed trains (HST) with different first and last bogie positions. The results of the numerical simulations have been validated against experimental data obtained from a previous wind tunnel test, a full-scale field test and a reduced-scale moving model test. The results of the flow prediction are used to explore the effects of the bogie positions on the slipstream, wake flow, underbody flow and aerodynamic drag. Compared with the original HST model, the downstream movement of the first bogie, has a great effect on decreasing the slipstream velocity and pressure fluctuation aside the HST, especially around the lower part of the HST. Furthermore, the size of the longitudinal vortex structure and slipstream velocity in the near wake region also decrease significantly by moving the last bogie upstream. Additionally, the movement of the first and last bogies toward the HST center, effectively decreases the drag values of the head and tail car, while a lower effect is observed on the intermediate cars.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.