Abstract
AbstractWe present the effect of bloat on the efficiency of incremental evolution of locomotion of simulated snake-like robot (Snakebot) situated in a challenging environment. In the proposed incremental genetic programming (IGP), the task of coevolving the locomotion gaits and sensing of the bot in a challenging environment is decomposed into two subtasks, implemented as two consecutive evolutionary stages. In the first stage we use genetic programming (GP) to evolve a pool of morphologically simple, sensorless Snakebots that move fast in a smooth, open terrain. Then, during the second stage, we use this pool to seed the initial population of Snakebots that are further subjected to coevolution of their locomotion control and sensing morphology in a challenging environment. The empirical results suggest that the bloat no immediate effect on the efficiency of the first stage of IGP. However, the bloated seed contributes to a much faster second stage of evolution. In average, the second stage with bloated seed reaches the best fitness values of the parsimony seeds about five times faster. We assume that this speedup is attributed to the neutral code that is used by IGP as an evolutionary playground to experiment with developing novel sensory abilities, without damaging the already evolved, fast locomotion of the bot.KeywordsIncremetal genetic programmingBloatNeutrality
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.