Abstract

The bis(trifluoromethanesulfonyl)amide, TFSA, anion is widely used in the genesis of room temperature ionic liquids as it is non-spherical, fluorinated and has a particularly diffuse charge. However, the extent to which each of these structural features is responsible for the low melting point, fluidity and excellent stability of the resultant ionic liquids has yet to be described. We present the synthesis and analysis of a range of analogous, non-fluorinated species containing the bis(methanesulfonyl)amide, NMes2−, ligand. Utilisation of this anion produces ionic liquids that are hydrophilic and extremely low melting, but with decreased thermal and electrical stability and significantly increased viscosity. The crystal structures of the dimethyl pyrrolidinium bis(methanesulfonyl)amide and TFSA species are compared, and the number of close contacts within each is assessed. Comparison of these structural and physical properties provides new insight into the effect of anion fluorination on these ionic liquids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.