Abstract

In the present work, we have investigated the effect of catalysts (ammonia, formic acid, ammonia dimer, and ammonia water complex) on the oxidation of CO via a simple Criegee intermediate by means of kinetics and quantum chemical calculations. Our finding suggests that, in the presence of ammonia and ammonia dimer the title reaction becomes a barrierless reaction with respect to the isolated reactants (energy barrier = ∼-0.53 and ∼-0.27 kcal mol-1, respectively), whereas in the presence of formic acid and ammonia-water complex the energy barrier of the CI + CO reaction becomes ∼2.84 and ∼0.82 kcal mol-1, respectively. However, among all the catalysts, due to the very low concentration of the ammonia dimer, its contribution towards the title reaction is insignificant as compared to that of the other catalysts. In addition, the relative rate of the other catalyzed channels against the uncatalyzed reaction suggests that the rate of the catalyzed CI + CO reaction is ∼8-10 orders of magnitude lower than the uncatalyzed reaction. However, the concentration of bimolecular complexes formed in the presence of catalysts (except the ammonia dimer) is ∼1-8 orders of magnitude higher than the concentration of bimolecular complexes formed in the uncatalyzed reaction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.