Abstract

The effect of additives upon the ability of meso-carbon microbead (MCMB) carbon/ LiNixCo1−xO2 lithium-ion cells containing methyl butyrate-based electrolytes to provide operation over a wide temperature range (−60 to +60°C) was investigated. A number of electrolyte additives were studied, including mono-fluoroethylene carbonate (FEC), lithium oxalate, vinylene carbonate (VC), and lithium bis(oxalato borate) (LiBOB). The intent of incorporating these additives into methyl butyrate-based electrolytes is to widen the operating temperature range of these systems, especially at warm temperatures. A number of formulations were investigated in experimental three-electrode MCMB/ LixNiyCo1−yO2 lithium-ion cells, based on an electrolyte that has previously been demonstrated to provide good low temperature performance (to −60°C), namely 1.00M LiPF6 in ethylene carbonate (EC) + ethyl methyl carbonate (EMC) + methyl butyrate (MB) (20:20:60 v/v%). In addition to studying the charge and discharge behavior of the cells, a number of electrochemical techniques were also employed, including Electrochemical Impedance Spectroscopy (EIS), Tafel polarization and linear polarization to understand the interfacial effects on the intercalation kinetics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.