Abstract
ObjectivesAcute exposures to outdoor air pollution have been shown to reduce lung function in children with asthma, but the effect on adults with asthma has not been established in a meta-analysis. The objective of this study was to conduct a systematic literature review and meta-analysis of studies that assessed the relationship of outdoor air pollution and peak expiratory flow (PEF) in adults with asthma. MethodsStudies that contained data on outdoor air pollution levels (PM10, PM2.5, or NO2) and PEF in adults with asthma were eligible for inclusion. Effect estimates were quantified for each air pollution measure using random effects models. Heterogeneity was investigated with the Q-test and I2 statistics. Meta-regression and subgroup analyses were conducted to determine differences in effect by air pollution measures and the inclusion of smokers. ResultsA total of 22 effect estimates from 15 studies were included in this review. A 10 μg/m3 increase in acute PM10 exposure was associated with a −0.19 L/min (95% CI: 0.30, −0.09) change in PEF. For both PM10 and PM2.5, the inclusion of current smokers was a significant source of heterogeneity among studies (meta-regression: p = 0.04 and p = 0.03). Among studies that only included non-smokers, a 10 μg/m3 increase in acute exposure to PM10 and PM2.5 was associated with changes in PEF of −0.25 L/min (95% CI: 0.38, −0.13) and −1.02 L/min (95% CI: 1.79, −0.24), respectively. ConclusionsThis study provides evidence that acute increases in PM10 and PM2.5 levels are associated with decreases in PEF in adults with asthma, particularly among non-smokers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.