Abstract
The acutely dissociated neurons from the dorsal root ganglia (DRGs) are extensively used. The effects of acute dissociation on the properties of these neurons are, however, not clear. In this study, the action potentials (APs) were recorded from both acutely dissociated and in vivo identified DRG neurons with patch clamp and sharp electrode recording techniques, respectively. We found that acute dissociation slowed both the depolarizing and repolarizing rate of APs, and elongated the AP duration (APD). The lower recording temperature presented in the acutely dissociated neurons contributed to about 10% of these differences. The major contributor of these differences was possibly modulation of the mRNA expression especially those of the ion channels, as suggested by our observation that acute dissociation significantly reduced the mRNA abundance of Nav1.6–1.9. In conclusion, acute dissociation altered the electrophysiological properties of the DRG neurons; the disrupted gene-expression pattern may contribute to this effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.