Abstract

Catalyst layers play an important role in direct methanol fuel cells (DMFCs), providing the reaction sites and catalysing the electrochemical reactions. For gas diffusion electrodes with Pt nanowires in-situ grown on gas diffusion layers (GDLs), the hydrophobic property of the GDL surface negatively affects the growth of the Pt nanowire catalysts, leading to the unsatisfied catalysis performance. In this work, the influence of active screen plasma (ASP) treatment temperature and duration on the growth of Pt nanowire catalyst layer was systemically studied. Single cell performance test with in-situ electrochemical surface area (ECSA) measurement were conducted to evaluate the catalysis performance of the Pt nanowire catalyst layer grown on the ASP treated carbon paper; scanning electron microscopy (SEM) was used to observe the surface morphology of the catalyst layer formed. Results revealed that the ASP treatment conducted at 120 °C for 10 min can effectively promote the growth of Pt nanowires on carbon paper gas diffusion layer, which exhibited the best catalysis performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.