Abstract

It is well known that ultrasound enhances drug delivery to tissues, although there is not a general consensus about the responsible mechanisms. However, it is known that the most important factor associated with ultrasonically-enhanced drug permeance through tissues is cavitation. Here we report results from research conducted using a experimental approach adapted from single bubble sonoluminescence experiments which generates very well defined acoustic fields and allows controlled activation and location of cavitation. The experimental design requires that a biological tissue be immersed inside a highly degassed liquid media to avoid random bubble nucleation. Therefore, live frog bladders were used as the living tissue due to their high resistance to hypoxia. Tissue membrane permeance was measured using radiolabeled urea. The results show that an increase in tissue permeance only occurs when cavitation is present near the tissue membrane. Moreover, confocal microscopy shows a direct correlation between permeance increases and physical damage to the tissue.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.