Abstract

In this paper, the bending waves propagating along the edge of a semi-infinite Kirchhoff plate resting on a two-parameter Pasternak elastic foundation are studied. Two geometries of the foundation are considered: either it is infinite or it is semi-infinite with the edges of the plate and of the foundation coinciding. Dispersion relations along with phase and group velocity expressions are obtained. It is shown that the semi-infinite foundation setup exhibits a cut-off frequency which is the same as for a Winkler foundation. The phase velocity possesses a minimum which corresponds to the critical velocity of a moving load. The infinite foundation exhibits a cut-off frequency which depends on its relative stiffness and occurs at a nonzero wavenumber, which is in fact hardly observed in elastodynamics. As a result, the associated phase velocity minimum is admissible only up to a limiting value of the stiffness. In the case of a foundation with small stiffness, asymptotic expansions are derived and beam-like one-dimensional equivalent models are deduced accordingly. It is demonstrated that for the infinite foundation the related nonclassical beam-like model comprises a pseudo-differential operator.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.