Abstract

The edge-distinguishing chromatic number (EDCN) of a graph $G$ is the minimum positive integer $k$ such that there exists a vertex coloring $c:V(G)\to\{1,2,\dotsc,k\}$ whose induced edge labels $\{c(u),c(v)\}$ are distinct for all edges $uv$. Previous work has determined the EDCN of paths, cycles, and spider graphs with three legs. In this paper, we determine the EDCN of petal graphs with two petals and a loop, cycles with one chord, and spider graphs with four legs. These are achieved by graph embedding into looped complete graphs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.