Abstract

Terrestrial arthropods often colonized and became important in freshwater ecosystems, but did so less often and with little consequence in marine habitats. This pattern cannot be explained by the physical properties of water alone or by limitations of the terrestrial arthropod body plan alone. One hypothesis is that transitions among terrestrial, aquatic and marine ecosystems are unlikely when well-adapted incumbent species in the recipient realm collectively resist entry by initially less well adapted newcomers. I evaluated and modified this hypothesis by examining the properties of donor and recipient ecosystems and the roles that insects play or do not play in each. I argue that the insularity and diminished competitiveness of most freshwater ecosystems makes them vulnerable to invasion from land and sea, and largely prevent transitions from freshwater to terrestrial and marine habitats by arthropods. Small terrestrial arthropods emphasize high locomotor performance and long-distance communication, traits that work less well in the denser, more viscous medium of water. These limitations pose particular challenges for insects colonizing highly escalated marine ecosystems, where small incumbent species rely more on passive than on active defences. Predatory insects are less constrained than herbivores, wood-borers, filter-feeders, sediment burrowers and social species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.