Abstract

Correct boundary conditions for the E x e dynamic Jahn-Teller problem are considered explicitly for the first time to obtain approximate analytical solutions in the strong coupling limit. Numerical solutions for the decoupled equations using the finite difference method are also presented. The numerical solutions for the decoupled equations exhibit avoided crossings in the weak coupling region, which explains the oscillating behavior of the solutions obtained by Longuet-Higgins et al. for the coupled equations. The obtained analytical energy expressions show improved agreement with the numerical calculations as compared with the previous treatment in which the potentials were assumed to be harmonic. We demonstrate that the pseudorotational energy j(2)/(2g(2)), where g is the dimensionless vibronic coupling constant, and j total angular momentum: j=+/-1/2,+/-3/2,..., in the conventional strong coupling expression for the vibronic levels of the lower sheet is exact. Non-Hermitian first-order perturbation theory gives the energy which is correct up to 1/g(4). The asymptotic behavior of the wave function at the origin does not influence the corrected energy up to order of 1/g(4). At the same time the treatment of the upper sheet with correct boundary conditions gives solutions which are entirely different from the corresponding Slonczewski's solutions. Besides, the correct boundary conditions enable us to evaluate the nonadiabatic coupling between the lower and upper potential sheets. The energy correction due to the nonadiabatic coupling is estimated to be of order 1/g(6).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.