Abstract

Critical to our understanding of infections and their treatment is the role the innate immune system plays in controlling bacterial pathogens. Nevertheless, many in vivo systems are made or modified such that they do not have an innate immune response. Use of these systems denies the opportunity to examine the synergy between the immune system and antimicrobial agents. In this study we demonstrate that the larva of Galleria mellonella is an effective in vivo model for the study of the population and evolutionary biology of bacterial infections and their treatment. To do this we test three hypotheses concerning the role of the innate immune system during infection. We show: i) sufficiently high densities of bacteria are capable of saturating the innate immune system, ii) bacteriostatic drugs and bacteriophages are as effective as bactericidal antibiotics in preventing mortality and controlling bacterial densities, and iii) minority populations of bacteria resistant to a treating antibiotic will not ascend. Using a highly virulent strain of Staphylococcus aureus and a mathematical computer-simulation model, we further explore how the dynamics of the infection within the short term determine the ultimate infection outcome. We find that excess immune activation in response to high densities of bacteria leads to a strong but short-lived immune response which ultimately results in a high degree of mortality. Overall, our findings illustrate the utility of the G. mellonella model system in conjunction with established in vivo models in studying infectious disease progression and treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.