Abstract

The temporal and spatial evolution of the two counter-propagating laser waves inside the active medium of a gain coupled distributed feedback dye laser is studied via a dynamic model. More specifically, the feedback mechanism, the temporal and spatial evolution of laser waves, the interaction between them, and the effect of pump pulse characteristics on the feedback strength are explained. It is shown that a pumping configuration with a spatial Gaussian pattern strongly decreases the laser pulse energy. This has never proposed or described by other models in the literature. For a narrow Gaussian pump pulse, the distributed feedback lasing on both sides of the active medium vanishes and causes further dissipation of stored energy in the form of spontaneous emission.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.