Abstract

Recent years have seen a renewal of interest in multi-term linear matrix equations, as these have come to play a role in a number of important applications. Here, we consider the solution of such equations by means of the dynamical functional particle method, an iterative technique that relies on the numerical integration of a damped second order dynamical system. We develop a new algorithm for the solution of a large class of these equations, a class that includes, among others, all linear matrix equations with Hermitian positive definite or negative definite coefficients. In numerical experiments, our MATLAB implementation outperforms existing methods for the solution of multi-term Sylvester equations. For the Sylvester equation AX+XB=C, in particular, it can be faster and more accurate than the built-in implementation of the Bartels–Stewart algorithm, when A and B are well conditioned and have very different size.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.