Abstract
The pre-planned schedules of a transportation company are often disrupted by unforeseen events. As a result of a disruption, a new schedule has to be produced as soon as possible. This process is called the vehicle rescheduling problem, which aims to solve a single disruption and restore the order of transportation. However, there are multiple disruptions happening over a “planning unit” (usually a day), and all of them have to be addressed to achieve a final feasible schedule. From an operations management point of view the quality of the final solution has to be measured by the combined quality of every change over the horizon of the “planning unit”, not by evaluating the solution of each disruption as a separate problem. The problem of finding an optimal solution where all disruptions of a “planning unit” are addressed will be introduced as the dynamic vehicle rescheduling problem (DVRSP). The disruptions of the DVRSP arrive in an online manner, but giving an optimal final schedule for the “planning unit” would mean knowing all information in advance. This is not possible in a real-life scenario, which means that heuristic solution methods have to be considered. In this paper, we present a recursive and a local search algorithm to solve the DVRSP. In order to measure the quality of the solutions given by the heuristics, we introduce the so-called quasi-static DVRSP, a theoretical problem where all the disruptions are known in advance. We give two mathematical models for this quasi-static problem, and use their optimal solutions to evaluate the quality of our heuristic results. The heuristic methods for the dynamic problem are tested on different random instances.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.