Abstract
Adapting limb mechanics in a task and environment dependent manner is one component of human motor control. Joint mechanics have been extensively studied under static postural conditions, but less so under time-varying movement conditions. The limited studies that have investigated joint mechanics during movement, have found a drop in joint stiffness during movement, however the source of this decrease in stiffness remains unknown. Here in this paper we investigate whether time-varying muscle activation, which occurs during volitional movement, can lead to the drop in stiffness seen during movement. We found that under time-varying isometric conditions stiffness dropped when subjects transitioned from extension to flexion and vice-versa, a phenomenon that could not be explained by simply superimposing extension and flexion contractions. These findings suggest that dynamics of muscle activation may be responsible for the complex pattern of stiffness changes seen during simple movements. Furthermore, these results imply that EMG-based estimates of stiffness, which work well for steady-state postural conditions, will need to be augmented to account for the highly non-linear relationship between muscle activation and stiffness before they can also be used to estimate stiffness during dynamic contractions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.