Abstract

When a stress wave (tensile or compressive) impinges on a crack existing in an elastic medium, reflection, refraction and diffraction-phenomena take place. A result of diffraction is the loading of the crack. While compressive stress-waves do not create any stress concentration at the tip of an existing crack, tensile stress-waves develop stresses at the tip which may cause a propagation of the crack. If the tensile pulse is weak the crack may propagate by steps under the action only of successive tensile stress-pulses, whereas intermediate compressive-stress pulses do not have any influence. A complete study of the phenomena of incubation, initiation and propagation of cracks in thin plates, when they are subjected to a compressive pulse, which is subsequently reflected from the free boundaries of the plate and changed to complicated wave-trains, was undertaken in this paper, based on the method of caustics. Interesting results that were derived from this experimental study are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.