Abstract

AMPA receptors (AMPARs) are glutamate-gated cation channels that mediate fast excitatory neurotransmission and synaptic plasticity. Structures of GluA2 homotetramers in distinct functional states, together with simulations, emphasise the loose architecture of the AMPAR extracellular region (ECR). The ECR encompasses ∼80% of the receptor, and consists of the membrane-distal N-terminal domain (NTD) and ligand-binding domain (LBD), which is fused to the ion channel domain. Minimal contacts within and between layers, together with flexible peptide linkers connecting these three domains give rise to an organisation capable of dynamic rearrangements. This building plan is uniquely suited to engage interaction partners in the crowded environment of synapses, permitting the formation of new binding sites and the loss of existing ones. ECR motions are thereby expected to impact signalling as well as synaptic anchorage and may thereby influence AMPAR clustering during synaptic plasticity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.